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Abstract 14 

The estimation of precipitation across the globe from satellite sensors provides a key resource in 15 

the observation and understanding of our climate system. Estimates from all pertinent satellite 16 

observations are critical in providing the necessary temporal sampling. However, consistency in 17 

these estimates from instruments with different frequencies and resolutions is critical. This paper 18 

details the physically-based retrieval scheme to estimate precipitation from cross-track (XT) 19 

passive microwave (PM) sensors onboard the constellation satellites of the Global Precipitation 20 

Measurement (GPM) mission. Here the Goddard PROFiling (GPROF) scheme, a physically-21 

based Bayesian scheme developed for conically-scanning (CS) sensors, is adapted for use with 22 

XT-PM sensors. The present XT GPROF scheme utilizes a model-generated database to 23 
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overcome issues encountered with an observational database as used by the CS scheme. The 24 

model database ensures greater consistency across meteorological regimes and surface types by 25 

providing a more comprehensive set of precipitation profiles. The database is bias-corrected 26 

against the CS database to ensure consistency in the final product. Statistical comparisons over 27 

Western Europe and the United States show that the XT GPROF estimates are comparable with 28 

those from the CS scheme. Indeed, the XT estimates have higher correlations against surface 29 

radar data, while maintaining similar root mean squared errors (RMSE). Latitudinal profiles of 30 

precipitation show the XT estimates are generally comparable with the CS estimates although in 31 

the southern mid-latitudes the peak precipitation is shifted Equator-wards while over the Arctic 32 

large differences are seen between the XT and the CS retrievals. 33 

 34 

1 Introduction 35 

 36 

The estimation and mapping of precipitation across the Earth’s surface is of great importance. 37 

Precipitation (rainfall and snowfall) is fundamental to many aspects of life on Earth, through the 38 

provision of fresh water that impacts our economic and social wellbeing. On a scientific level, 39 

precipitation plays a fundamental role in linking the Earth’s water and energy cycles. To 40 

properly understand precipitation within the Earth System, it is necessary to quantify it on a 41 

global scale. While rain (and snow) gauges remain the de facto source of conventional 42 

information on precipitation their uneven distribution, and therefore their representativeness, 43 

limits their usefulness for measuring global precipitation. Similarly, surface radar datasets have 44 

limited spatial extent. The ability of satellite instrumentation to provide regular global 45 

observations is therefore a key component of any global precipitation measurement system. 46 

 47 
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Satellite observations using visible (Vis) and infrared (IR) images from low Earth orbiting (LEO) 48 

or geostationary (GEO) satellites provide regular observations of clouds from which estimates of 49 

precipitation may be generated. However, although precipitation originates from clouds not all 50 

clouds produce precipitation. More importantly, the relationship between the cloud top properties 51 

and the precipitation reaching the surface is indirect. Passive microwave (PM) radiometers allow 52 

a more direct measure of precipitation to be made since these frequencies are more sensitive to 53 

precipitation-sized particles. Multi-frequency PM instruments (e.g. the Special Sensor 54 

Microwave Imager Sounder, SSMIS, or the Microwave Humidity Sounder, MHS) allow more 55 

complex methods to be used to extract precipitation estimates over a range of different regimes. 56 

In 1997 the Tropical Rainfall Measuring Mission (TRMM) was launched, hosting a number of 57 

precipitation-related instruments, notably the TRMM Microwave Imager (TMI) and the 58 

Precipitation Radar (PR); TRMM finally ended data collection on 8 April 2015. Building upon 59 

the success of TRMM, the Global Precipitation Measurement mission (GPM) Core Observatory 60 

was launched in 2014, joining a constellation of international satellites equipped with 61 

precipitation-capable sensors and providing improved capabilities for the measurement of 62 

precipitation from passive and active microwave sensors (Hou et al. 2014). 63 

 64 

Alongside the technological development of satellite instrumentation, techniques have been 65 

developed and evolved to extract information on precipitation from the satellite observations. 66 

Although the Vis/IR observations are relatively indirect, their frequent temporal availability from 67 

GEO sensors permits the timely production of near real-time products for applications such as 68 

flood forecasting. The more direct observations made by PM sensors have led to a range of 69 

precipitation estimates using empirical and/or physically-based schemes. Empirical techniques 70 

built upon basic radiometric properties of precipitation, such as the Polarization-Corrected 71 
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Temperature (Spencer et al. 1986; Kidd 1998) and Scattering Index (Ferraro et al. 1998), have 72 

achieved a degree of success (see Kidd et al. 1998). However, while empirically-based schemes 73 

are generally simpler and computationally faster, physically-based schemes generally provide 74 

more information on precipitation, such as types of hydrometeor and even atmospheric profiles 75 

of precipitation. The Goddard PROFiling (GPROF) scheme (Kummerow et al, 2001, 2015) is an 76 

example of the latter and has been developed for use with multi-channel microwave observations 77 

from conically-scanning (CS) radiometers such as the Special Sensor Microwave/Imager 78 

(SSM/I) and the TRMM Microwave Imager (TMI). In the GPM era the constellation of 79 

precipitation-capable sensors includes both CS and cross-track (XT) sensors necessitating the 80 

incorporation of XT observations into the GPROF scheme. 81 

 82 

This paper describes the adaptation of the GPROF scheme to utilize observations from the XT 83 

PM instruments. Section 2 describes the GPROF scheme in detail together with the steps 84 

required to adapt it to the observations from the XT sensors, and in particular the incorporation 85 

of model information, which is described in Section 3. Initial results from testing of the new 86 

GPROF XT scheme using data from the MHS are provided in Section 4, while Section 5 87 

provides a discussion of the results and future directions. 88 

 89 

2 The GPROF retrieval scheme 90 

 91 

Although the presence of precipitation is often evident in maps of PM brightness temperatures, 92 

providing unambiguous retrievals of precipitation is often difficult. This is primarily due to the 93 

variability of the surface background, and/or the non-unique observed spectral signatures to 94 

hydrometeor profiles/surface rainfall relationships. A greater insight into the radiometric 95 
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signature may be obtained through inverse radiative transfer modelling, although such techniques 96 

are ultimately limited by the model itself and the computational requirements. 97 

 98 

One of the better-known physically-based precipitation retrieval techniques is the GPROF 99 

scheme, originally conceived by Kummerow and Giglio (1994). The scheme was devised to not 100 

only provide an estimate of the surface precipitation, but also an estimate latent heat release 101 

(amongst other parameters) from the vertical structure of the precipitation. In its purest form, the 102 

observed brightness temperatures (Tbs) are processed through inverse radiative transfer 103 

modelling to provide an estimate of precipitation (see Kummerow et al. 1996; Olson et al. 2007). 104 

However, due to the computational expense of such a scheme a Cloud Radiation Model (CRM) -105 

based a priori database is employed to provide fully parametric precipitation estimates through a 106 

conditional probalistic Bayesian retrieval scheme; critically, once the a priori CRM-based 107 

database had been established for one sensor, it can be extended to include other passive 108 

microwave sensors. 109 

 110 

The basic assumption of the scheme is that the CRM database can accurately describe and 111 

represent the precipitation to be retrieved. Early CRM simulations (see Tripoli, 1992; Tao and 112 

Simpson, 1993) had relatively simple microphysical schemes that limited not only the 113 

representativeness and accuracy of the results, but also proved to be computationally expensive. 114 

Similarly, the matching of the satellite observations to the CRM database was (at the time) time-115 

consuming, consequently a rain/no-rain screen was introduced in the earlier versions of GPROF 116 

so that the database was only accessed for observations likely to have rain. The CRM database 117 

was then interrogated to find a profile that best matches the spectral signature of the satellite 118 
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observation. However, no distinct precipitation signatures may exist since the observed radiances 119 

are affected by a range of factors other than precipitation, including surface effects, radiometric 120 

noise, together with beam filling effects resulting from the (relatively) large footprints, etc. 121 

Furthermore, since PM sensors have a limited number of channels and thus cannot uniquely 122 

identify all the possible radiometric signatures, the accuracy of the retrieval is based upon the 123 

ability of the observations to resolve the true spectral signature (Smith et al. 1994). While it is 124 

possible to select the database entry with the closest signature, the retrieved value can only be an 125 

approximation of the true value. A Bayesian scheme is therefore used to generate not only an 126 

estimate of precipitation, but also an estimate of uncertainty of the retrieval itself (see Elsaesser 127 

and Kummerow 2015).  128 

 129 

The GPROF retrieval scheme has undergone a number of modifications over time to improve the 130 

retrievals, including improvements to the radiative transfer model used in the generation of the a 131 

priori database, freezing level heights over the oceans, discrimination of regions of stratiform vs 132 

convective precipitation, cold surface screening, etc. (see Kummerow et al. 2001). The current 133 

GPROF scheme implemented for the CS radiometer observations, known as GPROF2014, is 134 

described in Kummerow et al. (2015). To better define the range of suitable hydrometeor profiles 135 

in the a priori database, together with improving the computational efficiency the current CS-136 

GPROF scheme, the database incorporates model-derived measures of skin temperature (Ts) and 137 

total precipitable water (TPW). The categorization of the profiles by Ts and TPW is based upon 138 

the findings of Berg et al. (2006) to account for regional differences in the relationship between 139 

surface precipitation and satellite radiances. Furthermore, since the background surfaces are 140 

deemed to be influential on the spectral signature of the observed Tbs, separate databases are 141 
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generated for 15 different surface types, including land, ocean, ice, etc. The profiles included in 142 

each of these databases are based upon the satellite observed radiances with rain rates derived 143 

from co-located surface-based radar or satellite-based radar (i.e. CloudSat Cloud Profiling Radar, 144 

CPR, and/or the TRMM Precipitation Radar, PR). In the retrieval process, model-generated Ts, 145 

TPW and surface type are attached to each set of observed brightness temperatures: the surface 146 

type selects the appropriate database and the Ts and TPW identifies which set of profiles within 147 

the database to use for the retrieval. 148 

 149 

Thus, the GPROF scheme comprises of three main processing steps as identified in Figure 1. The 150 

first involves the generation of the a priori database that contains radiances with associated 151 

surface rainfall, hydrometeor profiles and other pertinent data. The second step preprocesses the 152 

satellite observations by attaching the surface types and model-derived Ts and TPW to the set of 153 

brightness temperatures for each satellite footprint. The final stage performs the Bayesian 154 

retrieval of the precipitation by comparing the satellite observations to the radiances in the 155 

appropriate database with the same Ts and TPW. 156 

 157 

2.1 Adaption of GPROF to the XT sensors 158 

The inclusion of the XT sensors within the GPROF scheme is of great importance; first, it 159 

doubles the number of current PM sensors available for precipitation estimation and second, it 160 

provides a consistent approach to the retrieval of precipitation from the passive microwave 161 

radiometers that are part of the GPM constellation (see Table 1). The main differences between 162 

the CS and XT instruments are primarily the scanning geometry and channel selection. CS 163 

radiometers provide a (nearly) constant Earth Incidence Angle (EIA) and therefore consistent 164 
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footprint resolution (at each frequency) and polarization across the swath of the sensor. 165 

However, XT instruments scan perpendicular to the satellite’s trajectory such that the center of 166 

scan is close to, or at the sub-satellite point. Observations are taken at equal scan angles across 167 

the satellite swath resulting in a changing EIA with each scan position and consequently the size 168 

of each footprint increases away from the nadir point, together with changes in the polarization 169 

and the length of the atmospheric path between the Earth’s surface to the sensor. In addition, CS 170 

radiometers have traditionally used (imaging) channel frequencies typically between about 6.9 171 

and 90 GHz, while XT sensors have utilized higher (sounding) frequencies up to about 190 GHz. 172 

However, newer CS instruments including the Special Sensor Microwave Imager Sounder 173 

(SSMIS) and the GPM Microwave Imager (GMI) also incorporate these higher frequencies. 174 

 175 

Although most precipitation retrieval schemes have concentrated the observations from CS 176 

instruments (see Kidd and Huffman 2011; Kidd and Levizzani 2011), a number of techniques 177 

have been developed to exploit the observations from XT sensors. These include neural network 178 

approaches by Surussavadee and Staelin (2008) and Sano et al. (2015), the 183-WSL technique 179 

of Laviola et al. (2013) and a technique using canonical analysis by Casella et al. (2015). Of 180 

particular interest in the context of this paper is the Microwave Integrated Retrieval System 181 

(MiRS, Iturbide-Sanchez et al. 2011; Boukabara et al. 2011) that is used to generate a number of 182 

geophysical parameters from both CS and XT passive microwave observations using an iterative 183 

physical inversion scheme, although only the NOAA-18 and MetOp-A XT MHS sensors are 184 

used for precipitation estimation. However, current schemes only provide XT-only or CS-only 185 

retrievals of precipitation. The GPROF scheme described in this paper is adapted so that the 186 
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retrievals from both the CS and XT sensors can be obtained through the same methodological 187 

framework. 188 

 189 

The development of the XT-GPROF scheme has been based upon the MHS instrument, but 190 

recently extended to other XT sensors. The MHS has XT scan angles that vary from +49.44° to -191 

49.44° resulting in an EIA ranging from -58° to +58° and resolutions varying from 15.88 × 15.88 192 

km at nadir to 27.10 × 52.83 km at the swath edge (along-track × cross-track). In addition, the 193 

polarization changes from primarily vertical to primarily horizontal (or vice versa depending on 194 

the channel), and the atmospheric path increases to 1.88x that of the nadir path at swath edge. 195 

Although the details for each XT sensor are similar, they have subtle differences due to scan 196 

angles, frequencies used and nominal sensor resolution. The consequences of the variable EIA 197 

were therefore explored in the prototype XT GPROF scheme and are outlined below. 198 

 199 

2.2 Prototype XT-GPROF scheme 200 

In preparation for the operational version of the XT-GPROF scheme a prototype scheme was 201 

devised and tested; this prototype version augmented the CS-GPROF scheme with features that 202 

were deemed to be useful for the XT-GPROF version. As noted above, the changing EIA of the 203 

XT sensors impacts the resolution, polarization and atmospheric path of the observations. It was 204 

therefore assumed that observations at each scan position would need to be considered 205 

separately, or at least in groups of alike scan positions. An initial comparison of the impact of 206 

polarization with scan position upon the retrievals revealed only small differences, consequently 207 

the variation in the polarization with scan position was not considered at this stage. The effect of 208 

the resolution of the observations was also investigated. Rather than provide databases for each 209 
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of the 90 scan positions, databases were generated for 5 similar EIA scan position bins. Since the 210 

CS-GPROF scheme already comprises of 15 databases (one for each surface type), this meant 211 

that the prototype XT scheme required a total of 75 databases (15 surfaces x 5 scan position 212 

bins).  213 

 214 

The databases generated for the prototype version of the scheme were generated from matchups 215 

between the MHS satellite observations matched with collocated surface or satellite radar 216 

measurements, similar to that of the CS-GPROF scheme. Although this methodology worked 217 

well for the CS-GPROF databases, the number of available MHS-surface/satellite radar 218 

matchups was more limited for the XT databases. In addition, a greater number of databases (due 219 

to incorporating scan-positions) reduces the sample-size in each database resulting in increased 220 

noise and potentially missing retrievals. Since the MHS-channel frequencies are less sensitive to 221 

the surface background it was decided produce a single, surface-blind database that relied solely 222 

upon the modeled Tbs to adequately resolve the precipitation over any surface and for any scan 223 

position. Furthermore, to ensure an adequate number of database entries, the database was 224 

populated with profiles from the Multi-scale Modeling Frameworks (MMF) v2.1 model (as 225 

described in section 3). 226 

 227 

2.3 The XT-GPROF scheme 228 

The characteristics of the current operational XT-GPROF scheme, together with those of the CS-229 

GPROF scheme, are summarized in Table 2. The key difference between the two schemes is that 230 

the XT version uses a single model-derived database as opposed to the observation-derived 231 

databases of the CS-version. To ensure consistency between the CS and XT databases the mean 232 
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rainrate per XT database bin is bias-corrected against the CS databases to ensure comparable 233 

retrievals. In addition, the XT scheme incorporates a simple empirically-derived scan position 234 

adjustment that mitigates the effects of the changing resolution and beam filling upon the 235 

precipitation retrievals. This correction is designed to ensure that the precipitation retrieved at all 236 

scan angles is comparable with the nadir-only calculations from the MMF model. Also of note, 237 

unlike the diagnostic identification of frozen precipitation (i.e. snow) in the CS-GPROF scheme, 238 

falling snow is quantified directly from the XT retrieval itself.  239 

 240 

Crucial to the success of the XT-GPROF retrieval scheme is the MMF model. The primary 241 

purpose of using the MMF-simulated database is to establish a quality-controlled and physically-242 

based precipitation retrieval algorithm consistent with the GPM core satellite as well as the GPM 243 

constellation satellites. The advantage of using a MMF-simulated database includes i) the 244 

simulated microwave Tbs are derived from the identical physical assumptions and calculation 245 

methods; ii) it is straightforward to generate a Tb database for all constellation satellite sensors, 246 

iii) the database quality can be readily tracked for further improvement, and iv) the database can 247 

include drizzle and snowfall signals that might be missed through the use of an observation-248 

derived database. Critically the MMF provides physically consistent surface and environmental 249 

parameters together with associated radiances necessary to generate the XT database. 250 

 251 

3 The MMF model-derived database 252 

 253 

3.1 The MMF model 254 
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The NASA MMF model is composed of the Goddard Earth Observatory System V4 (GEOS4) 255 

and the Goddard Cumulus Ensemble (GCE) model. The GCE utilizes the new Goddard 4ICE 256 

microphysics, which includes explicit hail categories and many improved microphysics 257 

parameterizations (Lang et al. 2014, Chern et al. 2015). GEOS4 simulates general circulations 258 

and surface flux with a climate-scale grid configuration (2.5° × 2.0° horizontal grid spacing), 259 

which forces fine-resolution two-dimensional GCE models with a cloud-resolving-scale grid 260 

configuration (4 km horizontal grid spacing). The GCE explicitly simulates cloud dynamics and 261 

microphysics processes every 10 seconds, and the mean profiles of the GCE meteorological 262 

fields and hydrometeors feed back to the GEOS4 grid every hour. For computational efficiency, 263 

the GCE is configured in a two-dimensional (2D) grid (64 × 1 horizontal and 41 vertical) using a 264 

cycling boundary condition. In this way, numerous copies of explicit cloud-resolving model 265 

simulations replace ill-posed parameterization of sub-grid convection and cloud processes in 266 

GEOS4. This hybrid structure of the climate model enables a more realistic representation of 267 

convection without using ill-posed convective parameterization, improving many cloud-related 268 

features, such as the diurnal cycle of precipitation (Tao et al. 2009), land-atmosphere interactions 269 

(Mohr et al. 2012), and distributions of ice water content (Chern et al. 2015). 270 

 271 

Another advantage of using the MMF is that the spatial scale of MMF-simulated cloud-272 

precipitation parameters is close to those of satellite observations. While a traditional climate 273 

model often assumes complex sub-grid distributions or overlapping patterns for evaluation 274 

against satellite data (Webb et al. 2001), the MMF explicitly simulates the physical structure of 275 

cloud and convective processes through the 2D GCE; thus, the satellite instrumental simulator 276 

can be applied straightforwardly. The precipitation and microphysics parameters of the MMF 277 
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simulations can be evaluated directly against the satellite measurements (Matsui et al. 2009); if 278 

these synthetic satellite observations are in reasonable agreement with specific satellite 279 

measurements, a set of MMF-simulated satellite signatures and geophysical parameters may be 280 

used to populate databases for similar satellite sensors (Matsui et al. 2013). 281 

 282 

The drawback of using a MMF-simulated database is associated with the intrinsic nature of 283 

biases within models, including i) MMF dynamics and microphysics process and ii) forward 284 

model assumptions. These problems, especially the MMF biases, have been significantly reduced 285 

through various observation and model improvements, and are briefly summarized below:  286 

• Microphysics. A new Goddard 4ICE microphysics scheme replaced the original Goddard 287 

3ICE microphysics (Lang et al. 2014, Chern et al. 2015). This new scheme predicts an 288 

explicit hail category in addition to existing hydrometeor categories (cloud, rain, ice 289 

crystals, snow aggregate, and graupel). The occurrence of hail in convective cores is 290 

relatively rare and its spatial coverage is also very small (less than a few percent), but it 291 

improves the representation of strong precipitation intensity and the strong depression of 292 

microwave Tbs associated with convective core structure.  293 

• Vertical levels. The original GCE vertical resolution contained 28 levels up to the 294 

tropopause. However, it was found that Rayleigh dampening in the upper model layers 295 

tends to suppress vertical velocity of deep convection (maxima: ~10 m s-1).  Thus, the 296 

number of vertical levels were increased to 41 so that deep convection could be allowed 297 

to overshoot the tropopause, unaffected by Rayleigh dampening. As a result the 298 

maximum vertical velocity has been increased significantly (maxima ~30 m s-1), 299 

improving the representation of echo-top height distributions.  300 
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• Background meteorology. The free-running mode of long-term MMF (and any climate 301 

model) simulations often causes internal climate drift due to biases in the physics 302 

schemes and their interactions. For the production of the database, the background 303 

meteorology should be as close as possible to the observation. Consequently, the mean 304 

meteorological fields of the MMF simulation were nudged using the European Centre for 305 

Medium Range Weather Forecasts (ECMWF) Interim re-analysis (ERA-Interim) 306 

reanalysis. This suppresses the overestimation of high precipitation in the tropical warm 307 

pool region which are associated with frequent shallow convection in previous MMF 308 

simulations (Tao et al.  2009).  309 

 310 

3.2 The RT model 311 

The forward model used in the database generation is the GPM simulator suite of the Goddard 312 

Satellite Data Simulator Unit (G-SDSU, Matsui et al. 2013). Microwave brightness temperatures 313 

(Tb) are computed through a two-stream model with Eddington’s Second Approximation 314 

(Kummerow 1993) along satellite FOV-slant paths (Olson et al. 2001). Land-surface emissivity is 315 

estimated from the satellite-estimated climatology map (Aires et al. 2011), while water-surface 316 

emissivity is based on an empirical parameterization as a function of salinity, wind speed, and 317 

temperature (Wilheit 1979). Note that surface emissivity and skin temperature are assumed 318 

homogeneous in the forward model and for each copy of the 2D GCE. Gaussian weighting 319 

functions of brightness temperatures are then used to generate the satellite-resolution Tbs in 320 

combination of specific beam widths of sensors, sensor viewing angle, satellite altitude, and local 321 

elevation. 322 

 323 
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Hydrometeor single-scattering properties are computed at each GCE grid cell via the Lorenz-Mie 324 

method with effective refractive indices through the Maxwell-Garnett mixture method. Single-325 

scattering calculation follows the exact assumptions of Goddard 4ICE microphysics for size 326 

distributions and bulk effective density, including new empirical snow-graupel size and density 327 

mapping (Lang et al. 2014). Single-scattering properties are integrated over the two liquid and 328 

four ice categories to represent bulk single-scattering properties.  329 

 330 

3.3 Implementation 331 

The XT-GPROF scheme therefore currently relies on a single database (covering all surface 332 

types) which is derived from the MMF model. The MMF simulations were generated for 1 year 333 

from 1 January 2007 to 31 December 2007 with profiles sampled over the globe equidistantly 334 

every c. 200 km; large-scale meteorological conditions (temperature and humidity profiles) were 335 

nudged using the ERA-Interim every 24 h in order to avoid internal climate drift. 336 

 337 

As noted above, to ensure consistency between the CS and XT retrievals the XT database is bias-338 

corrected against the CS database. Figure 2 depicts the mean rain rate per database bin for the 339 

aggregated GMI databases and the MMF-derived database for the MHS sensor. While the 340 

general form of the databases are broadly similar, it can be seen that the MMF-derived database 341 

provides profiles over a greater range of Ts and TPW than the GMI database; the MMF-derived 342 

database ranges from 189-344 K for Ts and 0-95 g Kg-1 for TPW compared with the GMI 343 

database ranging from 230-337 K for Ts and 0-80 g Kg-1 for TPW. While both schemes use Ts 344 

and TPW derived from the ECMWF model, the key difference is the restriction imposed by 345 

sampling on the GMI observational database. One of the consequences of the CS database being 346 
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based upon observations is that the retrieval will fail if it attempts to retrieve a profile beyond 347 

any previously seen meteorological condition. While the distribution of the mean rain rates is 348 

similar between the two databases, the greater range of the MMF database provides higher rain 349 

rate profile entries for high values of TPW. 350 

 351 

The MMF-derived databases initially developed to generate products from the MHS sensor 352 

(Kidd 2014a-d) are currently being extended to include the Advanced Technology Microwave 353 

Sounder (ATMS) on the US Suomi National Polar-orbiting Partnership (NPP) satellite and the 354 

Sondeur Atmosphérique du Profil d'Humidité Intertropicale par Radiométrie (SAPHIR) on the 355 

French/Indian Megha-Tropiques satellite. 356 

 357 

4. Verification and validation 358 

 359 

The XT-GPROF retrievals are generated in near real time by the GPM Precipitation Processing 360 

System (PPS) at NASA’s Goddard Space Flight Center. The XT v1-2 retrievals (Kidd 2014a-d) 361 

for the MHS and CS v1-4 retrievals (Kummerow 2014a-e) for the AMSR2, GMI and SSMIS are 362 

used in this study. The spatial resolution of the CS-GPROF retrievals are set by the size of the 363 

size of each sensor’s 3 dBZ sensitivity at 37 GHz; this equates to a retrieval resolution of 12 × 7 364 

km for AMSR2, 14 × 8.6 km for GMI and 44.2 × 27.5 km for SSMIS. The scan position 365 

corrected XT retrievals are deemed to be comparable with the nadir-only 15.88 × 15.88 km 366 

resolution of the model-generated database, regardless of scan position. In addition, comparisons 367 

were also made for the SSMIS using a resolution of 15 × 15 km to permit more consistent 368 

comparisons with those from the other sensors.  369 
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 370 

Surface radar data over two regions, the United States, and Western Europe, was used as ground 371 

‘truth’; both these regions have extensive, high-quality radar coverage suitable for the validation 372 

of satellite products (see Kidd et al. 2012; Ebert et al. 2007). However, due the spatial and 373 

temporal sampling of the radar data over these regions two different approaches were adopted for 374 

the satellite/surface comparison. Over the United States radar data is available at a spatial 375 

resolution of 0.01° × 0.01° every 2 minutes from the National Oceanic and Atmospheric 376 

Administration (NOAA) National Severe Storms Laboratory (NSSL) Multi-Radar/Multi-Sensor 377 

(MRMS) system (Kirstetter et al. 2012). The satellite estimates were subsetted from the orbital 378 

files for each two minute segment; the time stamp was set to the end time to match the timestamp 379 

of the corresponding radar data. The satellite footprints were then mapped to the radar data grid 380 

for each two minute segment and the radar data averaged within the satellite footprint to provide 381 

a corresponding surface rainfall value. For this comparison, only radar data with the highest 382 

quality index (see Kirstetter et al. 2012) equal to 1.0 over the entire footprint were included in 383 

the analysis. Furthermore, data west of 100°W were excluded in the analysis due to the paucity 384 

of radar coverage over the mountainous western United States. 385 

 386 

Radar data over Western Europe (Met Office 2003) was obtained from the Centre for 387 

Environmental Data Archive (CEDA). The data are a composite of radars covering the United 388 

Kingdom, France, Germany and the Netherlands, mapped to an equal area projection at 5 × 5 km 389 

spatial resolution every 15 minutes. Due to the coarser resolution of the radar data, matching the 390 

surface radar to satellite footprints necessitates a different matching approach. The centers of 391 

each satellite footprint were mapped to the 5 × 5 km radar data; where the radar data was fully 392 
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within the satellite footprint a weight of 1.0 was assigned, otherwise a weight less than one was 393 

assigned on the margins of the satellite footprint based upon the fraction coverage of the satellite 394 

footprint. Since no radar quality index was available for the European radar data, a skill-score 395 

map derived from previous satellite/radar comparison (see Kidd and Hou 2012) was used to 396 

provide a measure of quality. 397 

 398 

Precipitation retrieval by intensity: 399 

One of the artifacts associated with the Bayesian retrieval scheme is that if any profile within the 400 

searched set of profiles within the database contains any precipitation, all retrievals using that bin 401 

will return a non-zero precipitation result leading to an exaggerated occurrence of precipitation. 402 

Figure 3 shows the satellite/surface-radar ratio of the accumulated (liquid-only) precipitation in 403 

0.01 mm h-1 bins for 6 March 2014 to 5 March 2015 over the US. The retrievals from all the 404 

sensors exhibit significant over estimation at low rainfall intensities: in particular, the AMSR2 405 

retrievals show nearly a 50-fold overestimation of precipitation accumulation in the lowest 406 

(>0.00-0.01 mm h-1) bin, while the MHS show a more modest 8-fold overestimation. However, it 407 

should be noted that these very low-intensity comparisons are somewhat dubious due to the 408 

statistical nature of the retrieval and the sensitivity of the surface radar dataset to very light 409 

precipitation. Nevertheless, Figure 3 shows that the overestimation of light precipitation is 410 

matched by an underestimation of the moderate intensities for the AMSR2, GMI and MHS 411 

retrievals; the SSMIS underestimates the precipitation accumulation (about x0.7) across all 412 

intensities above 0.25 mm h-1. Although some of this underestimation by the SSMIS could be 413 

attributed to the large retrieval footprint (44.2 x 27.5 km), it would be expected that this would 414 

be compensated by overestimation at other rain intensities. 415 
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 416 

Since all the retrievals overestimate the very light precipitation, it is therefore advisable to 417 

threshold the rain/no-rain boundary at about 0.1 mm h-1, although differences occur in the 418 

threshold between the sensors and over different regions. The ideal rain/no-rain threshold may be 419 

found by adjusting the rain rate threshold of the satellite retrieval so that the rain and no-rain 420 

occurrences match those of the surface radar; Figure 4 maps these thresholds over the US for the 421 

retrievals from each of the four sensors. The SSMIS generally exhibits the lowest rain/no-rain 422 

thresholds generally below 0.2 mm h-1, while the MHS shows the highest rain/no-rain threshold 423 

at about 0.2 mm h-1 over land, but higher over the coastal oceans; these higher thresholds 424 

indicate that the satellite estimates are overestimating the occurrence of precipitation in these 425 

regions. However, all show similar patterns in the distribution of the threshold, with generally 426 

higher values over the Mississippi valley, and lower values over the mountainous Western US, 427 

and along the Appalachians in the East. The variations in the distribution of the thresholds 428 

suggest a regional effect on the surface reference data (under/over estimation by the surface 429 

radar) or a surface background effect. 430 

 431 

Statistical performance 432 

Two basic statistical measures were used to assess the performance of the retrievals over 433 

Western Europe and the US, namely the correlation coefficient and root mean squared error 434 

(RMSE). The comparisons were performed on instantaneous retrievals using only high-quality 435 

radar data for each day between 6 March 2014 and 5 March 2015. A rain/no-rain threshold of 0.1 436 

mm h-1 was set for both the satellite retrievals and the radar estimates (values less than 0.1 mm h-437 

1 being set to zero). In addition, for the summary of daily statistical performance, only days on 438 



20 
 

which more than 1% of the radar data was raining were included in the analysis. Figure 5 shows 439 

the occurrence of the number of days which attained correlations within the respective 440 

correlation bins. At the native retrieval resolutions the SSMIS (44.2 × 27.5 km) performs best 441 

with more than 80% of the days having correlations of 0.6 and above; the MHS in comparison 442 

has about 45% of the days with correlations above 0.6. However, the large footprint of the 443 

SSMIS (based upon the resolution of the 37 GHz frequency channel) means that precipitation 444 

features are smoothed compared with retrievals with a higher-spatial resolution; consequently the 445 

correlations will be higher for the same precipitation events. If the SSMIS retrievals are 446 

compared with collocated radar sampled at 15 ×15 km (comparable with the other retrievals), the 447 

occurrence of correlations above 0.6 drops to less than 20%, less than those of the AMSR2, GMI 448 

or MHS. Performance of the retrievals for the RMSE shows a similar grouping: the higher 449 

resolution retrievals show a broad peak from about 0.4-0.6 to 1.2-1.4 mm h-1, while the SSMIS 450 

has a more distinctive peak at 0.6-0.8 mm h-1. However, if the SSMIS is compared at the higher 451 

resolution, the distribution of RMSE is similar to the other retrievals although with a higher 452 

occurrence in the lowest, 0.0-0.2 mm h-1 bin. 453 

 454 

Over Western Europe the distribution of daily correlations has a greater range; over the US the 455 

correlations were concentrated between 0.3 and 0.8, over Europe correlations lie generally 456 

between 0.0 and 0.8, as shown in Figure 6. It can be seen that the performance of all the 457 

retrievals is relatively consistent with the MHS retrievals performing slightly better as noted by 458 

the higher occurrence of correlations in the 0.6-0.7 category. Interestingly, despite the larger 459 

footprint of the SSMIS, the retrievals are not significantly better than the higher-resolution 460 

retrievals (as was the case of the United States), and that the correlations are broadly similar 461 
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when the higher-resolution SSMIS retrievals are considered. Analysis of the RMSE scores show 462 

a similar performance between the different retrievals at the finer resolutions with peak RMSEs 463 

between 0.2-0.4 and 0.4-0.6 mm h-1; the coarser native-resolution SSMIS retrieval having 464 

slightly lower (better) RMSE. The differences in statistical performance between the US and 465 

Europe are most likely a combination of different climate regimes and the relative quality of 466 

surface radar data. 467 

 468 

The effectiveness of the XT scan-position correction on the retrieved precipitation is assessed 469 

through a comparison over the US between the edge-of-scan and near-nadir estimates. Scan 470 

positions 1-22 and 69-90 were assigned as edge-of-scan, while 23-68 as near-nadir. As Figure 7 471 

shows, the differences in the correlation coefficient between these retrieval groups is small, with 472 

the edge-of-scan retrievals providing slightly better correlations than those near-nadir. We can 473 

therefore assume that the retrievals have comparable validity irrespective of scan position. 474 

 475 

To assess the spatial variability of the correlation between the satellite and surface estimates, 476 

correlations were calculated between all instantaneous satellite/surface collocated matchups on a 477 

1° × 1° grid for the period 6 March 2014 through 5 March 2015 over the US. The maps of the 478 

these correlations are plotted in Figure 8 for the four satellite products at their native retrieval 479 

resolution, together with those of the SSMIS at 15 × 15 km resolution. The paucity of radar 480 

coverage over the western half of the US is clearly visible with correlations typically less than 481 

0.50. Over the eastern half of the US correlations are generally better than 0.60, with the SSMIS 482 

producing correlations over 0.70. However, if the SSMIS retrievals are compared at the 15 × 15 483 
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km resolution, these correlations drop to between about 0.60 and 0.65, similar to those of the 484 

other products. 485 

 486 

Annual global estimates 487 

Despite the comparable statistics performance of the XT retrievals with those of the CS over the 488 

US and Western Europe, a key issue is whether these estimates provide reasonable global 489 

estimates. The mean annual precipitation for all four sensor types has been calculated (for all 490 

data ≥ 0.0 mm h-1) for the period 6 March 2014 through 5 March 2015 (the first year of GMI 491 

data availability) with the results shown in Figure 9. The CS retrievals produce similar estimates 492 

with all the main regional-scale features evident; the XT retrievals also show these features 493 

although subtle differences exist. The XT retrievals along the Inter-Tropical Convergence Zone 494 

(ITCZ) are generally slightly less than those of the CS retrievals with some regional variations, 495 

such as off the West coast of Africa. Precipitation in the mid-latitudes is broadly similar, 496 

although differences can be noted along the South Pacific convergence zone and along the storm 497 

tracks of the Southern Oceans. The AMSR2 and SSMIS estimates produce significant 498 

precipitation over the polar regions (the GMI only observes up to 68° N/S) with retrievals from 499 

the SSMIS producing mean daily precipitation of 3 mm d-1 (water equivalent), while the AMSR2 500 

retrievals produce nearly 2 mm d-1. Breaking the annual totals down into the occurrence of 501 

precipitation by intensity (see Figure 10) shows that the high latitudes exhibit the greatest 502 

differences between the retrievals with the MHS showing the least occurrence of precipitation 503 

over land and ocean across all intensities, although note the limited extent of the GMI data. At 504 

the mid-latitudes (60°-30°S and 30°-60°N) all the techniques have similar occurrences of 505 

precipitation intensity for land and for ocean, although the GMI generates more high-intensity 506 
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precipitation. Within the Tropics (30°S-30°N) there appears to be more variation between the 507 

techniques and background surfaces: over the ocean the GMI and AMSR2 produce less light 508 

precipitation than the SSMIS and MHS retrievals, while over land the retrievals are similar for 509 

light precipitation. However, for higher rain intensities the GMI and AMSR2 have a higher 510 

occurrence of precipitation than the SSMIS and MHS retrievals. 511 

 512 

Latitudinal profiles of mean daily rainfall are shown in Figure 11; the differences between the 513 

XT MHS retrievals and those of the CS retrievals are evident, particularly above 70°N and south 514 

of 30°S. Further analysis shows that above 70°N the CS retrievals are affected by melting snow 515 

and ice at the surface during the Arctic summer. South of 20°S, the XT retrievals show a peak in 516 

precipitation at about 35°S, north of that suggested by the CS retrievals. However, at higher 517 

southern latitudes the XT estimates are closer to those from the GPM Dual-frequency 518 

Precipitation Radar (DPR) than the CS estimates. Outside these regions the agreement is 519 

generally good, although the peak precipitation produced by the MHS at about 5°N is about 10% 520 

less than that of the CS sensors, but similar to that obtained by the DPR. 521 

 522 

5. Discussion and Conclusion 523 

 524 

Although the basic premise of the GPROF retrieval scheme is relatively simple, the 525 

implementation of the scheme is less straight forward, particularly so with the XT sensors. 526 

Overall the XT scheme aims to provide retrievals that are comparable with those of the CS 527 

retrievals to ensure a homogenous dataset, however fundamental differences between the sensor 528 

types necessitates variations in the retrieval scheme. The most notable differences between the 529 
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current schemes relate to the database itself. The choice of the MMF-modeled database rather 530 

than the observational database of the CS is primarily due to the representativeness of the 531 

database entries: Preliminary tests using a XT observational database produced too many 532 

‘missing’ retrievals. In addition, the use of different data sources to generate an observational 533 

database potentially contributes additional noise within the database itself as well as potential 534 

inconsistencies between the different regimes used in the database creation. While the model 535 

itself is not perfect, one advantage of the modelled database is the consistency across the 536 

different profile entries: an increase in TPW or Ts leads to a corresponding and predictable 537 

change in the profile entry. 538 

 539 

Statistical comparisons between the satellite retrievals and the surface radar data show that the 540 

model-based XT MHS retrievals are at least comparable with those of the observational-based 541 

CS retrievals. While the SSMIS retrievals outperform other estimates at its native retrieval 542 

resolution, the statistical performance of the SSMIS retrievals is much reduced when compared 543 

at a similar scale to the other retrievals. For similar spatial resolutions, the MHS retrievals 544 

exhibit generally higher correlations than the CS retrievals. Despite the MHS retrievals 545 

performing well statistically, some issues remain. As noted in Figures 3 and 4, the rain/no-546 

threshold for the MHS retrievals is higher than those for the CS retrievals, particularly so over 547 

the coastal-ocean region. 548 

 549 

In terms of the global distribution of mean annual precipitation (Figure 9) two principle regions 550 

can be identified where substantial differences occur between the XT and CS retrievals. The first 551 

is over the high latitude regions in the northern hemisphere where the CS retrievals (AMSR2 and 552 
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SSMIS) produce much more precipitation (c. 1.8 and c. 2.9 mm d-1 respectively) than the XT 553 

MHS retrieval (0.2 mm d-1). Although the MHS value appears low, the MHS results presented 554 

here are similar to the 2009-11 climatology provided by the MiRSv4.0 product in Boukabara et 555 

al. (2011); the AMSR2 and SSMIS values are certainly too high. Closer analysis of the data 556 

found that the majority of the precipitation generated by the AMSR2 and SSMIS retrievals was 557 

associated with the summertime melting of the snow and sea ice over the Arctic. The second 558 

region where discrepancies between the XT and CS retrievals are evident over the southern 559 

oceans, and in particular over the South Pacific Ocean around 30°S between 150°W and 120°W; 560 

here the MHS produces a maxima in the order of about 8 mm d-1 whereas the CS retrievals show 561 

a less clearly defined maxima of about 6 mm d-1 to the northwest. These differences are also 562 

evident in the latitudinal profiles shown in Figure 11, which also highlights the widespread 563 

differences between the XT and CS estimates over the southern hemisphere south of 30°S. If the 564 

estimates from the DPR are included it can be seen that although the MHS retrievals are too high 565 

around 35°S, the CS estimates are between 2 and 4 times that of the DPR or MHS estimates by 566 

60°S. These differences require further investigation but probably arise from a combination of 567 

physical reasons and retrieval assumptions. For example, over the oceans the XT and CS use 568 

different combinations of channel frequencies, the XT using channel frequencies above 89 GHz 569 

while the CS sensors use primarily frequencies below 89 GHz, therefore the fundamental 570 

observation-rainfall relationships will be different. In addition, the observational database used 571 

by the CS retrievals make certain assumptions in the higher-latitude regions based upon the 572 

matchups between the TRMM PR and satellite observations in the Tropics. Some of these 573 

differences might also be addressed through improved representation within the databases (in 574 

both/either the XT and/or CS), or a more fundamental way the database is devised. For example, 575 
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databases are currently organized into bins of TPW and Ts (to be replaced by TPW and T2m in 576 

version 2), but since the XT sensors are less sensitive to the surface than the CS sensors due to 577 

their channel selection, the use of the Ts or T2m might be less useful or inappropriate for 578 

constraining the XT retrievals. 579 

 580 

Both the observation-based CS-GPROF and model-based XT-GPROF schemes rely upon an a 581 

priori database for the physically-based precipitation retrieval within a Bayesian framework. 582 

However due to unique hybrid structure of traditional climate model and cloud-resolving models, 583 

the MMF provides more complete distributions of various types of precipitation and associated 584 

microwave Tb in sampling space. This approach is also beneficial for generating databases for 585 

various microwave instruments of GPM constellation partners, since it simply relies on the 586 

unified framework in terms of the cloud-precipitation model and the GPM forward model. On 587 

the other hand, retrieval errors and uncertainties depend on the quality of the MMF simulations 588 

and a forward model.  589 

 590 

In the present study, the NASA MMF runs a 2D GCE with 4 km horizontal grid spacing and 41 591 

vertical levels that is appropriate for resolving deep and organized convection. While it may not 592 

be suitable for numerically representing less-organized convection on a scale of less than 10-grid 593 

spacing of the GCE, the 4 km GCE horizontal grid spacing may effectively resolve cloud 594 

dynamics on the size of 40 km or larger. Even in the 3D grid framework with 1 km grid spacing, 595 

the GCE simulation does not necessarily represent the structure of isolated convection well 596 

(Matsui et al. 2009). For such intermediate-size convection, a grid size of at least 250 m is 597 

required for the realistic simulation of a precipitation system (Lang et al. 2014). The 2D grid 598 
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structure with homogeneous surface conditions also biases the updraft structure, cloud dynamics, 599 

and precipitation intensity and types in contrasting regions, such as between continental and 600 

ocean environments (Matsui et al. 2015). This may require heterogeneous surface patch (either 601 

land-cover types or land-ocean mask) in GCE to induce the necessary mesoscale pressure 602 

gradient to invigorate continental / island convection (Robinson et al. 2011). This sub-grid 603 

thermal patch may also create more realistic precipitation Tb signals on coastlines, where passive 604 

microwave retrievals typically have biases due to rapid gradient of the surface emissivity (Kidd 605 

1998).  606 

 607 

In future versions of the XT database, it is planned to relax these issues through conducting 608 

MMF simulations with finer-resolution GCE (250 m horizontal grid spacing) over sub-grid 609 

heterogeneous surface conditions. Importantly these new MMF simulations, with new physics 610 

and grid configurations, will be constrained against the GPM combined product (GPM-2BCMB), 611 

in terms of precipitation intensity, microphysics, and storm structure. In parallel, the MMF 612 

simulation will be evaluated against the GMI Tbs and DPR reflectivities statistics through the 613 

GPM simulator. Although the new MMF update could take significantly more computational 614 

time and effort, Matsui et al. (2015) established a convective- and microphysics quasi-615 

equilibrium concept based on the time-invariant statistics of satellite observations over the entire 616 

Tropics. This concept suggests that single day statistics of microphysics and convection are 617 

similar to the climatology, as long as they are combined over the entire Tropics. This provides 618 

more rapid MMF development cycle; e.g., global statistics from single-day MMF simulation can 619 

be evaluated and constrained toward climatology statistics derived from the TRMM and GPM 620 

satellites.   621 
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 627 

Appendix. MMF-GPROF database improvement.  628 

 629 

Figure A1a shows the improvement of the MMF-simulated microphysics characteristics of deep 630 

convective clouds (echo-top height > 7 km) in the forms of the TRMM Precipitation Radar (PR) 631 

Contoured Frequency of Altitude Diagram (CFAD). TRMM PR CFAD shows dramatic transition 632 

of reflectivity distributions. There are distinct three transitional zones: solid-phase zone (i.e., 633 

above 8km) where the presence of solid precipitation particles generated narrow and vertically 634 

constant reflectivity profiles, mixed-phase zone (i.e., between 5 and 8 km) where the aggregation 635 

and melting process of frozen particles dramatically increased reflectivity distributions, and 636 

liquid-phase zone (i.e., below 5 km) where liquid raindrops dominate the radar backscattering 637 

signals.  638 

 639 

The CFAD from the MMF V1 database depart from characteristics of observed CFAD; e.g., 640 

maximum echo-top height is below 14km (lacking the undiluted hot tower), not distinct spectral 641 

broadening in the mixed-phase zone, underestimation of overall maximum echo signals 642 

throughout the profile due to lack of large precipitation particles. On the other hand, MMF V2 643 

database show, yet not perfect, but the simulated CFAD structure has distinct three microphysics 644 
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zones and realistic distributions of solid/mixed/liquid-phase precipitation microphysics. Liiquid-645 

phase echo distributions are relatively overestimated ~5 dBZ. the improved (V2) MMF 646 

simulation provides, not yet perfect, but more realistic structure of the PR.  647 

 648 

We also found that Gaussian weighting on the GCE column alignment are critical to formulate 649 

the Tb spectra for different sounder channels. Figure A1b shows the MHS-observed Tbs at 5 650 

channels (89~190GHz) averaged for each instantaneous surface precipitation rate bin from 651 

TRMM PR 2A25 product; the Tbs become generally colder with more intense precipitation due 652 

to the effects of scattering. For light-precipitation (less than c. 2 mm h-1) the 89 GHz channel 653 

shows a slight increase in Tb due to emission, thereafter decrease due to scattering. The higher 654 

frequencies show the 157 GHz and 190 GHz undergo the greatest scattering, followed by the 655 

183±3GHz and 183±1GHz channels respectively. Importantly, at the 190GHz, 183±3GHz, and 656 

183±1GHz channels, the associated thickness of the water vapor column results in the received 657 

signal being dominated by the elevated mixed- and solid-phase precipitation particles above 658 

lower troposphere; thus the scattering signal dominates the water vapor emission signal. 659 

 660 

The original approach in simulating antenna-convolved Tb is to fold the 64×1 x-y 2D GCE grid 661 

into artificial 9×7 x-y grid, and then applying the Gaussian weighting (mimicking microwave 662 

antenna gain pattern) function to the center of 9×7 x-y grid. However, this method tends to 663 

misrepresent the Tb relationship among different sounder channels from light to heavy 664 

precipitation, in comparison with MHS-PR observations. Scattering magnitude for heavy rain 665 

generally converged into closer magnitude among different sounder channels, and top of that, 666 

scattering was significantly overestimated, and sampling of very heavy precipitation (> 15 mm hr-667 
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1) was completely lacked.  When the Gaussian weighting function is applied directly to the 64x1 668 

2D GCE grid, the sounder Tb relationship and scattering magnitude structure of all MHS 669 

channels was significantly improved toward observed patterns. This result physically infers that 670 

MMF-GPROF database requires realistic “structure” of cloud-precipitation-water vapor profiles.    671 

 672 
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Captions: 810 

Table 1: Sensors contributing to the Global Precipitation Measurement mission constellation 811 

together with the scan type and frequencies used (those in italics are not included in this study). 812 

 813 

Table 2: Representation of occurrence (%) of light rainfall and ratio of accumulation for 814 

comparison over the United States. 815 

 816 

Figure 1: Generic processing steps for the GPROF retrieval scheme 817 

 818 

Figure 2: Mean rain rate per GPROF database bin for GMI (left) and MHS (right). Units for g 819 

Kg-1 for TPW and K for Ts. 820 

 821 

Figure 3: Ratio of rainfall accumulation by rain intensity over the United States for the AMSR2, 822 

GMI, MHS and SSMIS retrievals. 823 

 824 

Figure 4: Rain/no-rain threshold for GPROF satellite retrievals based upon comparison of 825 

MRMS surface radar rainfall vs satellite rainfall estimates. A surface radar quality index of 1.0 826 

(best quality) was used; period of study 6 March 2014 - 5 March 2015 827 

 828 

Figure 5. Distribution of daily correlation coefficients (upper plot) and RMSE (lower plot) over 829 

the United States based upon instantaneous precipitation retrievals from the AMSR2, GMI, MHS 830 

and SSMIS sensors at the sensor resolution. The clear outlined bars (upper plot) and dashed line 831 

(lower plot) represent the performance of the SSMIS retrievals at 15 x 15 km resolution rather 832 
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than the 44.2 x 27.5 km retrieval resolution. Only days with an occurrence of precipitation > 1% 833 

are included in the comparison. 834 

 835 

Figure 6. Distribution of daily correlation coefficients (upper plot) and RMSE (lower plot) over 836 

Western Europe based upon instantaneous precipitation retrievals from the AMSR2, GMI, MHS 837 

and SSMIS sensors at the sensor resolution. The clear outlined bars (upper plot) and dashed line 838 

(lower plot) represent the performance of the SSMIS retrievals at 15 x 15 km resolution rather 839 

than the 44.2 x 27.5 km retrieval resolution. Only days with an occurrence of precipitation > 1% 840 

are included in the comparison. 841 

 842 

Figure 7. Occurrence of daily-scale correlation coefficients for MHS retrievals over the US for 843 

nadir (23-68) and edge-of-scan (1-22 and 69-90) scan positions. 844 

 845 

Figure 8: Maps of correlation coefficients generated from instantaneous satellite/surface 846 

matchups for the period 6 March 2014 through 5 March 2015 on a 1° × 1° grid at the native 847 

retrieval resolution of the satellite estimates (a-d) and for the SSMIS at 15 × 15 km resolution 848 

(e). 849 

 850 

Figure 9: Global maps of annual precipitation covering the period 6 March 2014 through 5 851 

March 2015 for AMSR2, GMI, MHS and SSMIS. 852 

 853 
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Figure 10: Plots of the percent occurrence of rain intensities for instantaneous retrievals for three 854 

latitudinal groups, high latitudes (90°-60°), mid-latitudes (30°-60°) and the Tropics (30°-30°), 855 

for land and ocean. 856 

 857 

Figure 11: Latitudinal profiles of mean daily rainfall (mm d-1) for 6 March 2014 through 5 March 858 

2015. 859 

 860 

Figure A1:  a) Contoured Frequency of Altitude Diagram (CFAD) of deep convection (echo-top 861 

height > 7 km) for TRMM PR and MMF V1 and MMF V2 database; b) Tb-rainrate plot from 862 

MHS-TRMM PR co-temporal/co-located data (left), and data simulated from MMF with 863 

different Gaussian weighting with either 9x7 grid (center) or 64x1 (right) grid configuration. 864 

 865 

  866 
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Table 1: Sensors contributing to the Global Precipitation Measurement mission constellation 867 

together with the scan type and frequencies used (those in italics are not included in this study). 868 
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Table 2: Summary of key characteristics of the CS-GPROF and XT-GPROF schemes 871 

 872 

Feature CS-GPROF XT-GPROF 

Database Observation-based MMF model-based 

Surface types 15 categories Surface-blind 

Resolution 37 GHz channel* 15.88 x 15.88 km 

(MHS) 

TPW range 0-80 g Kg-1 0-95 g Kg-1 

Ts range 230-337 K 189-344 K 

Snow retrieval Diagnostic Retrieval 

*SSMIS = 44.2 x 27.5 km; AMSR2 = 12 x 7 km; GMI = 14 x 8.6 km. 873 

 874 

  875 
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 876 

Figure 1: Generic processing steps for the GPROF retrieval scheme 877 

 878 

  879 
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 880 

 881 

Figure 2: Mean rain rate per GPROF database bin for GMI (left) and MHS (right). Units are g 882 

Kg-1 for TPW and K for Ts. 883 

 884 

 885 

 886 

 887 

  888 



44 
 

 889 

Figure 3: Ratio of rainfall accumulation by 0.01 mm h -1 rain intensity bin over the United States 890 

for the AMSR2, GMI, MHS and SSMIS retrievals. 891 
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 898 

Figure 4: Rain/no-rain thresholds for GPROF satellite retrievals based upon matched 899 

satellite/surface radar occurrences of precipitation for the study period from 6 March 2014 to 5 900 

March 2015.  901 
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 905 

 906 

Figure 5. Distribution of daily correlation coefficients (upper plot) and RMSE (lower plot) over 907 

the United States based upon instantaneous precipitation retrievals from the AMSR2, GMI, MHS 908 

and SSMIS sensors at the sensor resolution. The clear outlined bars (upper plot) and dashed line 909 

(lower plot) represent the performance of the SSMIS retrievals at 15 x 15 km resolution rather 910 

than the 44.2 x 27.5 km retrieval resolution. Only days with an occurrence of precipitation > 1% 911 

are included in the comparison. 912 

 913 



47 
 

 914 

 915 

Figure 6. Distribution of daily correlation coefficients (upper plot) and RMSE (lower plot) over 916 

Western Europe based upon instantaneous precipitation retrievals from the AMSR2, GMI, MHS 917 

and SSMIS sensors at the sensor resolution. The clear outlined bars (upper plot) and dashed line 918 

(lower plot) represent the performance of the SSMIS retrievals at 15 x 15 km resolution rather 919 

than the 44.2 x 27.5 km retrieval resolution. Only days with an occurrence of precipitation > 1% 920 

are included in the comparison. 921 

 922 
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 923 

Figure 7. Occurrence of daily-scale correlation coefficients for MHS retrievals over the US for 924 

nadir (23-68) and edge-of-scan (1-22 and 69-90) scan positions. 925 

 926 

  927 
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 928 

 929 

Figure 8: Maps of correlation coefficients generated from instantaneous satellite/surface 930 

matchups for the period 6 March 2014 through 5 March 2015 on a 1° × 1° grid at the native 931 

retrieval resolution of the satellite estimates (a-d) and for the SSMIS at 15 × 15 km resolution 932 

(e).  933 
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 934 

 935 

Figure 9: Global maps of mean daily precipitation covering the period 6 March 2014 through 5 936 

March 2015 for AMSR2, GMI, MHS and SSMIS. 937 
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 939 

Figure 10: Plots of the percent occurrence of rain intensities for instantaneous retrievals for three 940 

latitudinal groups, high latitudes (90°-60°), mid-latitudes (30°-60°) and the Tropics (30°-30°), 941 

for land and ocean. 942 
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 944 

 945 

Figure 11: Latitudinal profiles of mean daily precipitation for 6 March 2014 through 5 March 946 

2015. 947 

 948 
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 950 

 951 

Figure A1:  a) Contoured Frequency of Altitude Diagram (CFAD) of deep convection (echo-top 952 

height > 7 km) for TRMM PR and MMF V1 and MMF V2 database; b) Tb-rainrate plot from 953 

MHS-TRMM PR co-temporal/co-located data (left), and data simulated from MMF with 954 

different Gaussian weighting with either 9x7 grid (center) or 64x1 (right) grid configuration. 955 
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